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Band structure and ordering of magnetic superlattices 

W M Fairbairn and S Y Yip 
Department of Physics, University of Lancaster, Lancaster LA1 4YB, UK 

Received 18 August 1989, in final form 28 December 1989 

Abstract. The unit cell of a superlattice which contains two multiplane layers corresponding 
to two different constituent atoms, one of which is a long-range magnetic rare-earth metal, 
is represented along the superlattice direction by square-well potentials of appropriate 
depths. The electronic band structure of this bilayer is obtained numerically. The variation 
in charge density within the bilayer is discussed. The information so obtained allows also the 
magneticordering of the superlattice system to be determined by establishing the variation in 
the RKKY exchange interaction with distance. Results for thissimple modelshow encouraging 
agreement with experimental evidence that the type of ordering is affected by the thickness 
of the magnetically inert multiplane layer and that long-range magnetic coherence may exist 
in these structures. 

1. Introduction 

Now that highly perfect single-crystal rare-earth (RE) superlattices can be successfully 
grown using the MBE method, much experimental work has been done to investigate the 
magnetic properties of such structures (Rhyne er a1 1989). A magnetic superlattice 
typically consists of L bilayers of N atomic planes of a long-range magnetic RE metal A 
followed by M such planes of a non-magnetic element B and is denoted by (AN-BM)L. 
Most experiments have been performed with at least 100 bilayers each containing 20- 
50 planes. Although such a system is three dimensional, it is its characteristic properties 
in the direction normal to the plane surface of the material on which it has been deposited 
that are of prime interest. It has been foulid by x-ray diffraction (Borchers et a1 1987) 
and neutron diffraction techniques (Majkrzak er af 1987, Rhyne er a1 1987, Majkrzak 
1989) that the magnetisation of these compounds can exhibit long-range coherence 
across the magnetically inert layers, and that the thickness of these layers has a profound 
effect on the magnetic ordering (Majkrzak er af 1988, Hong et a1 1987). The question 
that one asks then is whether the RKKY indirect-exchange interaction (Kittel 1963), 
which is so successful in accounting for the magnetic behaviour of pure RE metals 
and alloys, is responsible also for these observed magnetic effects. Here a theoretical 
approach to the question is provided through the analysis of a simple model which 
examines the properties of the non-localised electrons particularly along the direction 
of the c axis of the HCP structure of the superlattice. Numerical calculation establishes 
the band structure associated with such a system and provides information about how 
the electron distribution can vary within the bilayers. It provides also a basis for estab- 
lishing how the long-range character of the RKKY coupling associated with the magnetic 
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Figure I. The unit cell of the ID magnetic superlattice is represented by square wells of depths 
V ,  and V 2  along the superlattice direction. The width of the two types of well is b with spacing 
a between them. V ,  and V 2  are chosen such that there are three bound states in the 
wells representing the non-magnetic atoms and four bound states in those representing the 
magnetic ones. The top energy levels E!’) and Ei4) corresponding to VI and V 2 ,  respectively, 
are chosen to be at approximately the same energy. In this example there are N = 7 wells of 
depth V ,  followed by M = 4 wells of depth Vz.  

element varies when different thicknesses of the non-magnetic material are incorporated 
in the bilayer. 

2. Themodel 

In the model the two types of atom in the superlattice are represented by square wells 
of different depth, so that there are N wells of depth V I ,  followed by M wells of depth 
V2. This basic unit cell, i.e. one bilayer, is then repeated so that the structure as a whole 
is periodic with periodicity ( N +  M ) ( a  + b ) ,  where a is the spacing between wells and b 
the width of the wells, taken for simplicity to be the same for both atoms (see figure 1). 
For our purposes, because it is important to identify clearly the number and position of 
the bound states at each atomic site, the limiting case of b-wells is inappropriate. The 
depth of the wells are chosen such that they provide energy levels which are appropriate 
for the elements involved, and that the top levels E: and E;  corresponding to the 
potential depths VI and V 2 ,  respectively, are at approximately the same energy. Their 
values were determined numerically in accordance with the solution for a single square 
well of depth V and width b which is given by 

P ( E )  or q(e)  = qmVb2/2A2 - e2 

wherep(E) = E tan E and q ( E )  = - E  cot E with 

E = qmEb2/2fi2. 

For an electron of energy E in the unit cell, the Schrodinger equation has the solutions 

A ,  exp( - v) + B ,  exp(yz) 
in regions of zero potential, r =  0 ,2 ,4 ,  . . . , 2 ( N +  M )  
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A ,  exp(iPlz) + B ,  exp( -iP,z) 

in regions of potential - v l ,  r =  1, 3, 5 , .  . . , (2N- 1) 

A ,  exp(iP2z) + B ,  exp(-iP2z) 

in regions of potential -V2, r = (2N+ l), (2N+ 3), . . . ,2(N + M )  - 1 

where 

(iy)* = 2mE/h2 

h2P: = 2m(E + V,) 

h*p$ = 2m(E + V2). 

By requiring that the wavefunction satisfies the necessary boundary conditions whenever 
the potential changes, a relationship between the coefficients of the wavefunctions 
(Ao, Bo) and (A2(N+M),  B2(N+M))  can be obtained, i.e. 

where 

Q= ’’ + y2  sin(plb) I- 2yp, 
and R is the same as Q but with PI replaced by P2. In order to pass from one end of the 
superlattice bilayer to the other to obtain (A2(N+M),  B2(N+M)), one must operate on (A,,, 
Bo)  with the 2 x 2 matrix T = RMQN. Further, by Bloch’s theorem, this operation must 
be equivalent to operating with the matrix 

[ O  exp[ik,(N+ M)(a + b)]  1 exp[ik,(N+ M ) ( a  + b)] 0 

=exp[ik,(N+M)(a+b)] 1 2 = ~ Z 2  

so that 

giving 

d e t ( ~ z ~  - T) = 0 

if solutions are to exist. Since det T equals unity, it can be written as 

cos[k,(N + M)(a + b)] = & Tr T. ( 2 )  
This is the fundamental equation which enables us to determine numerically the band 
structure of the superlattice with the energy E of the electron being a function of 
wavenumberk,. It will further allow the charge density across the unit cell to be computed 



4200 W M Fairbairn and S Y Yip 

e (y -3.5 

-4. 

Figure 2. Band structure of the N = 3, M = 4 superlattice unit cell when E: and E4 are at 
about -3.7 eV. 

and, with the information so obtained, we can also investigate how the RKKY exchange 
interaction varies with distance. 

3. Band structure 

The parameters needed for the computation are the values of N ,  M ,  V1, V 2 ,  a and b. For 
convenience, a and b are taken to be identical (and equal to 1.5 A), but V1 and V 2  are 
chosen so as to permit the existence of three bound states in the wells representing the 
non-magnetic atom and four bound states in those representing the magnetic ones. We 
have also fixed M to have the values 3 and 4, with N varying from 3 up to 17. The two 
different types of atom are each assumed to contribute one electron to the conduction 
band so that, when N + M is an odd number and with spin being taken into account, the 
conduction band is half filled. It has been found for our simple model that in the energy 
region of interest, i.e. near the top energy level, for appropriate values of V1 and V2 
there appear N +  M bound sub-bands which are very close together when the top energy 
levels Ei3) and Ei4) corresponding to the potentials V1 and V 2 ,  respectively, are approxi- 
mately the same, indicating almost complete non-localisation of the wave functions 
across the whole unit cell as one might expect. However, if E: and E;  differ slightly, 
then the resulting energy bands have wider gaps between them and consequently some 
states are localised within the unit cell. These features are illustrated in figure 2 and 
figure 3. Note that in both cases the bottom bands are very narrow, showing that the 
electrons there are more tightly bound. 

4. Charge distribution 

The electron probability distribution across the superlattice bilayer can be obtained 
using the relations 

in the regions of zero potential with r = 0,2 ,4 ,  , . . ,2 (N + M ) ,  where zois the midpoint 
of the barrier in question. Also in the potential wells, we have 

sin(S2b) /'* V,V,* dz=b( /A, I2  + l B r I 2 )  f- 
Q 

21 

x [A$,* exp(i2Qzh) +A,* B,  exp(-i2Qzb)] 
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Figure3. (a )  Theslight differencein the topenergy 
levels E: and Ef results in the sub-bands having 
wider band gaps. Here E\3) = - 3.51 eV,  E?) = 
-3.75 eV with N = 3, M = 4. ( b )  The dispersion 
relation shows for these values of the parameters 
that part of the function 1- Tr  T which appears on  
the RHS of (2) and which is relevant for the least- 
tight sub-bands shown in the accompanying 
diagram. 

with r = 1,3 ,5 ,  . . . ,2(N + M) - 1, where !2 = PI or P2 and zh is the midpoint of the 
associated well. The coefficients (Ar,  B,), which are complex, are obtained as follows. 
From ( l ) ,  we have 

This gives 

This relation allows the various A, and B, to be determined since these can be expressed 
in terms of (Ao, Bo)  through the matrices R and Q, thus enabling the electron probability 
distribution across the superlattice bilayer to be found. Results for the N = 9, M = 4 
unit cell when E: and E; are at about -3.7 eV show that in general the charge density 
is distributed non-uniformly at the band edges but tends to be more or less uniform at 
the middle of the higher bands, while the distribution for the bottom bands tends to be 
very much the same for most states within the particular band with perhaps a little 
spreading as one goes from the bottom to the top of the band. Figure 4 shows the charge 
distribution for bands 1 ,3  and 7 for the particular unit cell considered. As can be seen, 
the charge density is higher in some regions than in others for the narrower bottom 
bands, indicating that the electron is more likely to be found in these regions of the 
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Figure 4. Electron distributions 
within bands 1 , 3  and 7 for the N = 
9, M = 4 superlattice bilayer when 
E ( 3 )  and Ei4) are at about -3.7 eV.  
The abscissa is in direction of 
increasing n where n is related to z 
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z = ( n  - l ) ( a  + b ) / 2  
n = 1 , 2 , 3 , .  . . , 2 ( N +  M )  + 1 

so that, when n is odd, z is the mid- 
point of the associated barrier, 
while n even corresponds to when z 
is the midpoint of a potential well. 
( a )  The charge density for states 
chosen from three bands are shown. 
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For band 1, the lowest in energy, 
the electron for the three states cho- 
sen is seen to be more localised in 
some regions of the bilayer than in 
others. ( b )  The same applies to 
band 3 but now a more uniform dis- 
tributionfor thestates in the middle 
of the band begins to occur. (c) For 
band 7, in which the Fermi energy 
liesforthis particular unit cell, there 
is an almost uniform distribution 
throughout the band except at the 
band edges; the distribution shown 
relates to a state near the middle of 
the band. 

unit cell. For the wider higher bands, however, the charge density is quite uniformly 
distributed showing that there is equal probability of finding the electron anywhere in 
the superlattice unit cell. 

5. RKKY exchange interaction 

The model as it stands can represent any superlattice that one cares to choose, and not 
just magnetic superlattices. For it to be a magnetic superlattice the atoms representing 
the magnetic element must possess magnetic moments such that they could interact to 
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produce the observed magnetic properties in these structures. Magnetic moments of the 
RE arise from the localised spins corresponding to their unfilled 4f shells (Cooper 1972). 
Since overlap with neighbouring atoms in the lattice is small, one would not normally 
expect cooperative magnetic phenomena in these materials to occur. The fact that they 
do is explained by the RKKY exchange interaction (Kittel 1963) in which neighbouring 
ions interact indirectly via the conduction electrons contributed by the 5d and 6s levels. 
The form of the interaction in three dimensions using free-particle wavefunctions 
exp(ik r )  is given by 

exp[ -i(k - k’) x] + cc P I o k F  d 3 k j z  d3k’  k2 - k’2 
I ,  - I ,  m*J2 H”(x)  = -~ 

2 ( 2 4 6  
k €  

where 

A(x)  normally being chosen to be a delta function; I ,  is the spin associated with the ion 
at site n,  and x is the distance between the spins at sites n and m. Upon performing the 
integration for a spherical Fermi surface, this expression reduces to a simple analytic 
form, i.e. 

H’(x) = I ,  Z,[4J2m*/(2n) 3]k$F(2k~r)  

where r = 1x1 and 

F(2kFr) = [2kFr cos(2kFr) - ~in(2k,r)]/(2k,r)~, 

For our model where the wavefunction is of the form indicated earlier whose coefficients 
are complex, such a simple analytical expression for the exchange interaction is not 
possible. In three dimensions the interaction for the superlattice takes the form 

where the V i  are the wavefunctions associated with the potential wells corresponding to 
the magnetic atoms, Ek is given by (h2/2m) (kf + k; + pi) and is measured from the 
bottom of the wells. Usingcylindrical polar coordinates ( K ,  k,, 0 )  with W(k) - exp(ik9) 
exp(ik,y) V(P2(k,), z ) ,  the integral can be written after performing the angular inte- 
gration as 

JO (0, )Jo(K’PA 
K 2  + pg - K” - pi2 W(X) = ( 2 4 2  n- ‘ I m  m*J2 

(2n)6 alloccupiedstates 

x K ‘ d K ’  K d K d k :  dk,  

where K ,  K ’ ,  pn and pA are ZD vectors, p being the vector distance of the projection onto 
the x-y plane of the distance between the atomic sites n and m and z = z ,  - 2, the 
distance in the z direction between these two sites. By choosing one of the sites (m) to 
be on the z axis and the other (n)  to be in the x-y plane so that z ,  = 0, p’, = x ;  + y;, 
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x, = y m  = 0, and remembering that the form of V(P2,  z )  is A(P2) exp(iP2z) + B(P2)  
exp( - iP2z), the following expression is obtained: 

dk: dk,  
X-- K d K d P ,  

dL% dP2 
(3) 

where R = m, = and dk,/dP2, dk:/dP; are related to y and y’ 
by 

dk,/dP2 = (Pz/r)[4Yra)/(N + M ) ( a  + b ) V l  - [f(Y4l21 

dk,,/dP; = (Bi/r’)[af(r’a)/(N + M ) ( a  + b W 1  - [f(r’4l21 

with 

f ( y a )  = cos[k,(N + M ) ( a  + b)]  

f ’ ( y a )  = - [ ( N  + M ) ( a  + b)/a] sin[k,(N + M ) ( a  + b)](dk,/d y )  

and the appropriate energy dependence is obtained from (2). 
Equation (3) enables the RKKY coupling between the spins at sites n and m to be 

computed. All the expressions in the integrand can be determined from equations (1) 
and (2) using appropriate numerical techniques. 

6. Magnetic ordering 

If we write the energy of interaction between the spin at site n in plane no and that at site 
m situated on the z axis in plane mo as 

H’((x) = GI, I,F,,  

where 

G = - ~ z ~ [ ~ * J ~ / ( ~ z ) ~ ] [ u ~ / ~ ( N  + M ) 2 ( ~  + b ) 2 ]  

then, in order to determine the type of magnetic ordering within a magnetic multiplane 
layer, we need to sum the interactions between each individual spin in a plane no with 
the spin on the z axis in plane mo for all planes. The moment components for the various 
magnetic configuration can be described in terms of a wavevector q parallel to the c axis 
(z axis) giving the periodicity of moments in successive hexagonal planes, and a polar 
angle 8 giving the moment orientation with respect to the c axis such that, for a spin I ,  
situated at ri, 

I,, = I C O S  8 

I ,  = I sin 8 cos(q - r , )  

I,, = I sin 8 sin(q - r , ) .  
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For general 6 and q these expressions describe a conical moment arrangement. In our 
calculation we restrict the moments to lie in the hexagonal planes so that 6 = n/2, 
I,, = 0. Hence, for the spins I , ,  I ,  at r, and r,, 

I ,  - I ,  = z2 cos(q * rnm) 

where r,, = r,, - r,. The dot product in parentheses gives the turn angle between 
moments in successive planes. Because all the moments within any one plane are parallel, 
we can replace r,,, by r,,,,, which is the distance between planes no and mo. Hence 

ff'(r) = C GFnmI2 COS(q * rnomo)  = GI2 FA,ynn cos(qrnom,l) 
mg allsitesninplaneno mn 

where 

is the interaction of all the moments on plane no with the single moment on the z axis in 
plane mo. 

Thus, for the magnetic layer with four atomic planes, 

Hr'(r) = GZ2{(Fi2 + F;, + Fi3 + FA, + FA4 + Fi3) cos[q(a + b)]  

+ (Fi3 + FA1 + F;4 + F & )  ~ 0 ~ [ 2 q ( a  + b)]  

+ (Fi4  + F i l )  cos[3q(a + b)]}. 

This will be a minimum when either 

sin[q(a + b)]  = 0 

or 

+ 4(F;3 + FA1 + F;4 + Fi2) COS[~(U + b)]  

+ 3(F;4 + F;,){4 C O S ~ [ ~ ( U  + b)]  - 1) = 0. 

The first case refers to either a ferromagnetic (q  = 0) arrangement of all the moments 
on allfourplanesor an antiferromagnetic ( q  = n / ( a  + b ) )  alignment onalternateplanes, 
whereas the second case can lead to a spiral configuration. It depends on which of the 
q-values makes Hr'(r) the lowest in energy to determine the low-temperature ground- 
state configuration. Once the ordering of the four magnetic planes of the chosen unit 
cell has been established, the next step is to see how this ordering affects the associated 
ordering in the magnetic layers immediately adjacent to it through the long-range 
RKKY exchange interaction. From energy considerations we can establish the relative 
orientation of the spins in the nearest planes in the neighbouring cells; the arrangement 
of the moments on the other planes within these layers will be as determined above. We 
again need to consider the effect only on the spin sites on the z axis since it will be the 
same on any other spin on that plane. On the assumption that this spin is oriented at an 
angle 6 with respect to the spins in the first atomic plane of the previous magnetic layer 
(which is always taken to be at 6 = 0 whatever the magnetic ordering of the layer as a 
whole may be), Then in general the energy of interaction between all the moments on 
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Table 1. Three magnetic layers (M = 3): AFM, antiferromagnetic; FM, ferromagnetic; s, 
spiral. The orderings for N = 4, 8 and 16 are in-phase correlations, and those for N = 6 and 
12 are out-of-phase correlations. 

N 4 6 8 10 12 14 16 
Ordering AFM FM FM S AFM S FM 

Table 2. Four magnetic layers (M = 4): s, spiral; FM, ferromagnetic. The ordering for N = 
15 is an in-phase correlation, and that for N = 11 is an out-of-phase correlation. 

N 3 5 7 9 1 1  13 15 17 
Ordering s s s S FM- S FM* S 

all four planes of the previous magnetic layer with that single spin situated at site m' is 
given by 

W ( r )  = G12{F;,, cos 8 + Fi,, cos[q(a + b)  + e ]  
+ FA,, cos[2q(a + b )  + 6'1 + F;,, cos[3q(a + b)  + e]}.  

When the four magnetic planes are ferromagnetically aligned, then this is 

G12(F;,, + F;,, + F;,, + F;,,) cos 8 

while for the antiferromagnetic case it is 

G12(F;,t - Fi,' + F;,, - F;,') COS 6'. 

This means that 6' will be 0 or n depending on the sign of the term in parentheses. 
However, when a spiral arrangement exists in the magnetic layer, 8 is given by 

tan 6' = - {F;,, sin[q(a + b)] + FA,, sin[2q(a + b)]  

+ F;,, sin[3q(a + b)]}/{Fim, + Fi,, cos[q(a + b)] 

+ F;,, COS 2q(a + b)]  + F;,, C O S [ ~ ~ ( U  + b)]}.  

Similar but simpler expressions for H"(r)  and 6' hold for the superlattice with three 
magnetic planes; terms involving the subscript 4 are omitted. The predicted ordering 
has been determined for systems containing 3-17 planes of the non-magnetic element 
intervening between either three or four magnetic planes. 

The results are shown in tables 1 and 2. It can be seen from these data that changing 
the width of the magnetically inert layer does affect the type of ordering which is 
predicted to occur within the magnetic layers. For the case M = 3 (shown in table l ) ,  
ferromagnetic, antiferromagnetic and spiral ordering within the layers are all predicted 
within the relatively small range of values of N .  For A4 = 4 (table 2), the predictions are 
mostly for spiral ordering, but ferromagnetic ordering also occurs. 

It is known from the experimental data that any ordering within individual magnetic 
layers may be correlated across the non-magnetic region. For the ferromagnetic and 
antiferromagnetic orderings this occurs with almost equal occurrence of the in-phase 
and out-of-phase correlations. It is surprising that the insertion of only two layers of 



Band structure and ordering of magnetic superlattices 4207 

non-magnetic material may alter radically the type of ordering predicted. Also it may 
leave the ordering unchanged but with the longer-distance correlations altered. No cases 
in which spiral ordering was continued coherently across the gap occurred, although in 
one or two cases the deviation in angle is quite small. 

Overall this relatively simple model does show a variety of magnetic orderings similar 
to those seen in measurements made on magnetic superlattices. It appears likely that 
the RKKY interaction, which so dominates the properties of the RE metals and alloys, 
provides a critical element also in the behaviour of these superlattice systems. 

7. Conclusions 

The unit cells of most magnetic superlattices which have been investigated experi- 
mentally contain an extremely large number of sites. Because of this, any accurate and 
self-consistent 3~ band-structure calculation would require enormous computing power, 
so that it is necessary to start any comparative analysis of theoretical and experimental 
data with band structures calculated from relatively simple models. The calculations 
reported in this paper are based on what is probably the simplest, but still realistic, 
model for dealing with systems in which the unit cell may contain more than 20 atoms. 

Any calculation of the form of the RKKY interaction, and in particular its variation 
with distance, depends strongly on the band structure (both energies and wavefunctions) 
of the electrons. Results such as those presented in tables 1 and 2 indicate clearly that 
our simple model does produce a form of the RKKY interaction which permits the wide 
variety of magnetic orderings seen experimentally. By choosing the appropriate states 
of the two constituent elements in the superlattice to have energies with approximately 
the same binding, the overall electronic charge density within the unit cell is uniform 
and there is no charge transfer within the system. Of course, as indicated in figures 2 and 
3, this does not imply that every state in a band corresponds to a uniform charge 
distribution and it can be surmised also that, if the conduction electrons are spin polarised 
when the system orders magnetically, it is possible that there will then exist within the 
so-called magnetically inert layers a spatial variation in the contribution by the electrons 
to the magnetism. Such an effect could produce spin-density waves which would have a 
direct bearing on rhe coherence of the magnetic ordering within the systems. 

While the model has exhibited many of the features which magnetic superlattices 
have shown experimentally it does not suggest that spiral orderings (when they occur) 
should be as strongly coherent as they are. It may be that the inclusion of spin polarisation 
of the electrons is important for explaining this phenomenon. It may be also that the 
analysis must be more properly three dimensional. The existing calculations are being 
extended to include both of these aspects as realistically as is feasible. The successes of 
the simple model reported here encourages the belief that such extended computations 
could prove to have predictive value. Larger numbers of magnetic layers in each bilayer 
also can be treated and the rather more complicated analysis of which magnetic orderings 
may be expected will be published in a later paper. 
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